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A  model checking  analysis of a complex fault  tolerant 
spacecraft  controller  was  completed at the NASA/WVU IV&V 
Facility during  1996-1997, by Frank  Schneider2, Steve 
Easterbrook, and Jack Callahan,  and  Gerard  Holzman3 

The fault  tolerant spacecraft controller  analyzed was required 
to complete the  execution of certain high priority  tasks in the 
face of external spacecraft faults. The faults are characterized 
such  that  the controller could not proceed while a  fault 
persisted.  Accordingly,  the  controller had to stop execution of 
its  high  priority task;  repair the  fault;  and  subsequently 
continue with the execution of the  high  priority  task . In order 
to make  the  process more efficient, and because certain 
subtasks  should  not be  repeated each subtask  was labeled  with 
a  “mark  point”  indicating  that  that subtask need not be repeated 
should  the  over-all  task be interrupted. For  example, a 
spacecraft turn with  reaction  wheels  could  not be repeated  or 
the spacecraft  heading  would be incorrect. Or, if a  soil sample 
were  being  gathered repeating a  fetch  for  already  retrieved 
tools would be redundant and wasteful of battery  power.  In 
this way all  previously  completed  subtasks need not be 
repeated and only  the  last  partially  completed subtask  has to be 
repeated.  A  typical sequence of events following  a  fault  would 
be: 

(1) spacecraft command detects  the  presence of an error 

(2) critical sequence execution is frozen, 
(3) the fault  causing  the  error is  repaired, 
(4) the  critical sequence execution  point  is  rolled  back  to 

the  beginning of the  partially  completed  sub-sequence 
(mark point),  and 

caused by a  fault elsewhere in the  spacecraft, 

(5) re-execution  of  the  high  priority  task  is resumed. 

To increase  reliability  and  availability,  a  second  redundant 
system controller  is also executed in parallel with the  main or 
prime  controller. This  backup controller  could  then  take  over 
control of the  spacecraft  bus  should the prime system  go down 
during the  execution of these  high  priority  tasks.  A 
consequence of prime  failure  was that the recovery  mechanism 
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included the possibility that the prime system  could  fail while it 
was itself repairing an external  fault. 

Our work used model checking  to  validate the behavior of this 
system. The state space available to  the.entire system was 
several  orders of magnitude too large  to  examine  all  possible 
behaviors.  Accordingly,  a  model was abstracted from the 
system design  that  contained key elements that  governed the 
system’s behavior. By abstracting  away  detail not germane to 
the  problem of interest,  we  were left with a  partial 
specification.  Our  analysis  focused  on  faults  that  occurred 
outside of the  prime  spacecraft  controller.  However, we were 
able  to derive  consequences  to  prime and backup  spacecraft 
controllers  failure with this  approach. 

Six separate  requirements on the rollback  scheme  were 
validated.  Each of the six  requirements  involved  approximately 
100, 000 states in the model, and took about 30 seconds  each. 
The response and recovery in each case was to the injection of 
a  single  spacecraft  fault in all  possible ways, based on the 
model. Three anomalies  were  found in the system,  showing 
that  meaningful  results  could be derived from a  modeling 
approach that uses only  partial  specifications. One anomaly 
was  an error in the  detailed  requirements, and the other two 
were  missing  or ambiguous requirements. 

Since this  method  allows the validation of partial 
specifications,  we concluded that it is  also an effective 
approach for  use during the system  development process. Here 
an effective approach  is for an IV&V team  to work in parallel 
with the  development  team. The  IV&V team  can then be 
responsible for  making sure  each incremental-partial-design 
element and its  co-evolving  implementation maintain fidelity 
with each other.  Accordingly,  the  over-all  development  product 
should  contain  fewer errors. We expect this  process to  be 
especially  useful, since it is based  on  design  analysis and most 
errors in software development  occur  during the design  phase 
or  earlier. 

We  are currently pursuing  this methodology  on  a  spacecraft 
test system. Here the modeling approach will be used to  check 
that the implementation conforms to  the  requirements by 
continuously  monitoring the implementations’  conformance  to 
requirements  whenever  the  test system  is running. 

This analysis was presented at the  April 98 meeting of the 
Third  Annual  International Conference on  Requirements 
Engineering (ICRE’98). It was named a “Best  Paper” in its 
category “ Safety, Survivability  and Fault Tolerance.” A COPY 

of the  full  paper  can be found  at http://research.ivv.nasa.gov/ . 
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